Innocuousness of \{XP, YP\} as a root clause in Japanese and English

Potential labeling problem with \{NP, TP\}: It has been agreed that CP and TP do not constitute independent units syntactically and semantically while VP and a direct object, for example, clearly do. This intuition was captured in earlier generative grammar by labeling CP and TP as S’ and S, respectively, and in recent frameworks like Chomsky (2008) under the assumption that CP is a phase and C’s features are inherited by T. Chomsky (2012) argues that merger of a subject and a finite predicate typically produces a set of two non-heads (i.e., \{NP, TP\}), which yields a labeling difficulty if the label is to be determined by the unique least-embedded head in the set. In ‘Young eagles are flying’ in (1a), the heads of the subject and the finite predicate are in the structurally same distance from a higher head; thus, its interrogative counterpart could be (1b) contrary to fact. The labeling ambiguity does not occur if TP merges with C before a subject. The subsequent merger of a subject, however, could modify TP in \{C, TP\}, violating the No-Tampering Condition (NTC), unless some special derivation is assumed as in [5]. This study claims that \{NP, TP\} is innocuous in certain contexts by citing cases of \{NP, TP\} labeled as N and T from Japanese and English.

C-T dependency: Chomsky (2012) motivates the merger of C with TP before a subject by the close relation between C and T, which is instantiated as auxiliary inversion. This relation, however, can be regarded as avoiding the labeling difficulty with \{NP, TP\}. Suppose that \{NP, TP\} can be labeled N or T. C, upon its merger with \{NP, TP\}, takes it as labeled T due to its intrinsic selectional property. The derivation straightforwardly satisfies the NTC.

\{NP, TP\} labeled as T in English: \{NP, TP\} needs to be labeled if it undergoes further computation. A root clause, by definition, merges with nothing. It follows that \{NP, TP\} can but need not be labeled in the root context. If this reasoning is correct, clauses are predicted to behave differently in the root and embedded contexts, which is attested by data falling under Ross/Kuno’s internal S constraint, Emonds’ root transformations, and Stowell’s Case Resistance Principle. English allows a sentential subject only in the root context as in (2). This restriction can be attributed to the occurrence of two Cs in the same spellout domain: \(<C, C>\) violates Distinctness in (3a) if (3b) is assumed in the spirit of [1]. If a root declarative clause in English lacks C as \(\alpha\) in (2a), \(<C, C>\) is not generated. A sentential subject in the root clause is disallowed if auxiliary inversion takes place as in (4), whereby the root becomes CP and \(<C, C>\) results. Other Germanic languages disallow sentential subjects (6) presumably because a root clause needs to be CP, which might be related to their V-second requirement.

\{NP, TP\} labeled as N in Japanese: S-final particles like \(yo\) and \(ne\) in Japanese, which express the speaker’s attitude and so on, cannot merge with an embedded clause as in (5). Besides occurring clause-finally, they can attach to major constituents of various categories with a pause as in (6), except embedded finite predicates as in (5b), which are taken to be TPs. Thus, the selectional properties of the S-final particles is that they cannot take TP. When appearing finally in a root clause, they can be optionally preceded by \(no\) as in (5a), which is taken as nominal on a par with \(no\) in (7). Then, Japanese finite predicates can be assumed to be nominalized in the root context, and \(\{X, \{NP, NP\}\}\) is generated as in (8).

(8) is configurationally similar to structured coordination discussed by Chomsky (2012): \([\beta Z W]\) in (9a) becomes single-headed by raising Z as in (9b), whereby \(\beta\) is labeled W. In (9b), \(\gamma\) is an illicit instance of \{XP, YP\}. Chomsky claims that \(\gamma\) in (9b) is labeled Z, which is reasonable since Z and W are typically of the same category. Thus, \(\gamma\) can be regarded as double-headed without causing labeling inconsistency. Since Japanese is strictly head-final, the symmetry in \(\{X, \{NP, NP\}\}\) cannot be broken analogously. Instead, the S-final particle selects both NPs, labeling \{NP, NP\} as N. Multiple selection is supported by (6), where the S-final particles are duplicated just like the English conjunction in (10). A root clause as nominal is arguably related to the fact in Old Japanese: the agreement called \(Kakarimusubi\) requires the predicate to take the attributive form, which functions as a nominalized clause.
(1) a. Young eagles are flying.
 b. *Eagles young eagles are flying?
 c. Are young eagles are flying?

(2) a. \[[\alpha [CP That you should go there] is important]\]
 b. *[[CP That [CP that Bill smokes cigarettes] bothers the teacher] is quite possible]
 c. *[[CP That [CP for Bill to smoke cigarettes] bothers the teacher] is quite possible]
 d. [[CP That it bothers the teacher [CP for Bill to smoke cigarettes]] is quite possible]
 e. [[CP That Bill’s smoking cigarettes bothers the teacher] is quite possible]

(Emonds 1970)

(3) a. Distinctness in Richards (2010:5): If a linearization statement \(<\alpha, \alpha>\) is generated, the derivation crashes.
 b. The phase head and its complement are spelled out at PF.

(4) *[[CP Is [CP that you should go there] important]]

(5) a. Taro-ga Hanako-ni hon-o age-ta (no) ne/yo
 NOM DAT book-ACC give-PAST ‘Taro gave a book to Hanako.’
 b. *Taro-ga Hanako-ni age-ta ne/yo hon
 NOM DAT give-PAST book ‘the book Taro gave to Hanako’

(6) Taro-ga ne/yo, Hanako-ni ne/yo, hon-o ne/yo, ageta ne/yo
 (essentially the same meaning as (5a))

(7) Taro-wa [TP Hanako-ga ki-ta] *(no)-o sir-anakat-ta.
 TOP NOM come-PAST ACC know-NOT-PAST ‘Taro didn’t know Hanako came.’

(8) \{X,\{NP, \{TP, no\}\}, where X is an S-finale particle and \{TP, no\} is labeled N.

(9) a. \[[\alpha Conj [\beta Z W]]\] b. \[[\gamma Z [\alpha Conj [\beta Z W]]\]

(10) John is tall (, and) dark, and handsome.

References: